6 mo) were prospectively recruited to undergo late phase DECT for characterization of their MI.Computed tomography(CT) examinations were performed using a dual source CT system(64-slice Definition or 128-slice Definition FLASH,Siemens Healthcare) with initial first pass and 10 min late phase image acquisitions.Using the 17-segment model,regional systolic function was analyzed using first pass CT as normal or abnormal(hypokinetic,akinetic,dyskinetic).Regions with abnormal systolic function were identified as infarct segments.Late phase DE scans were reconstructed into:140 kVp,100 kVp,mixed(120 kVp) images and iodine-only datasets.Using the same 17-segment model,each dataset was evaluated for possible(grade 2) or definite(grade 3) late phase myocardial enhancement abnormalities.Logistic regression for correlated data was used to compare reconstructions in terms of the accuracy for detecting infarct segments using late myocardial hyperenhancement scores.RESULTS:All patients reported prior history of documented myocardial infarction,with most occurring more than 5 years prior(n = 18;75% of cohort).Fiftyfive of 408(13%) segments demonstrated abnormal wall motion and were classified as infarct.The remaining 353 segments were classified as non-infarcted segments.A total of 1692 segments were analyzed for late phase enhancement abnormalities,with 91(5.5%) segments not interpretable due to artifact.Combined grades 2 and 3 compared to grade 3 only enhancement abnormalities demonstrated significantly higher sensitivity and similar specificity for detection of infarct segments for all reconstructions evaluated.Evaluation of different voltage acquisitions demonstrated the highest diagnostic performance for the 100 kVp reconstruction which had higher diagnostic accuracy(87%;95%CI:80%-90%),sensitivity(86%-93%;95%CI:54%-78%) and specificity(90%;95%CI:86%-93%) compared to the other reconstructions.For sensitivity,there were significant differences noted between 100 kVp vs 140 kVp(P">
當(dāng)前位置:首頁(yè) > 醫(yī)學(xué)文檔 > 心血管 > 正文

Diagnostic accuracy of cardiac computed tomography angiography for myocardial infarction

World Journal of Radiology 頁(yè)數(shù): 9 2013-08-28
摘要: AIM:To investigate diagnostic accuracy of high,low and mixed voltage dual energy computed tomography(DECT) for detection of prior myocardial infarction(MI).METHODS:Twenty-four consecutive patients(88% male,mean age 65 ± 11 years old) with clinically documented prior MI(> 6 mo) were prospectively recruited to undergo late phase DECT for characterization of their MI.Computed tomography(CT) examinations were performed using a dual source CT system(64-slice Definition or 128-slice Definition FLASH,Siemens Healthcare) with initial first pass and 10 min late phase image acquisitions.Using the 17-segment model,regional systolic function was analyzed using first pass CT as normal or abnormal(hypokinetic,akinetic,dyskinetic).Regions with abnormal systolic function were identified as infarct segments.Late phase DE scans were reconstructed into:140 kVp,100 kVp,mixed(120 kVp) images and iodine-only datasets.Using the same 17-segment model,each dataset was evaluated for possible(grade 2) or definite(grade 3) late phase myocardial enhancement abnormalities.Logistic regression for correlated data was used to compare reconstructions in terms of the accuracy for detecting infarct segments using late myocardial hyperenhancement scores.RESULTS:All patients reported prior history of documented myocardial infarction,with most occurring more than 5 years prior(n = 18;75% of cohort).Fiftyfive of 408(13%) segments demonstrated abnormal wall motion and were classified as infarct.The remaining 353 segments were classified as non-infarcted segments.A total of 1692 segments were analyzed for late phase enhancement abnormalities,with 91(5.5%) segments not interpretable due to artifact.Combined grades 2 and 3 compared to grade 3 only enhancement abnormalities demonstrated significantly higher sensitivity and similar specificity for detection of infarct segments for all reconstructions evaluated.Evaluation of different voltage acquisitions demonstrated the highest diagnostic performance for the 100 kVp reconstruction which had higher diagnostic accuracy(87%;95%CI:80%-90%),sensitivity(86%-93%;95%CI:54%-78%) and specificity(90%;95%CI:86%-93%) compared to the other reconstructions.For sensitivity,there were significant differences noted between 100 kVp vs 140 kVp(P<0.0005),100 kVp vs mixed(P<0.0001),and 100 kVp vs iodine only(P<0.005) using combined grade 2 and grade 3 perfusion abnormalities.For specificity,there were significant differences noted between 100 kVp vs 140 kVp(P<0.005),and 100 kVp vs mixed(P<0.01) using combined grades 2 and 3 perfusion abnormalities.CONCLUSION:Low voltage acquisition CT,100 kVp in this study,demonstrates superior diagnostic performance when compared to higher and mixed voltage acquisitions for detection of prior MI. (共9頁(yè))

開通會(huì)員,享受整站包年服務(wù)立即開通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會(huì)計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無(wú)機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無(wú)線電子 電信技術(shù) 鐵路運(yùn)輸 汽車工業(yè) 船舶工業(yè) 動(dòng)力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動(dòng)物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場(chǎng)研究 科學(xué)研究 互聯(lián)網(wǎng) 自動(dòng)化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動(dòng)物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件